线性代数的本质——总结篇
本文最后更新于538 天前,其中的信息可能已经过时,如有错误请发送邮件到lysun26@163.com

下方链接的压缩包里有一个xmind文件和pdf文件,主要是起到了一个目录的作用,有需要的可以下载下来。

链接:https://pan.baidu.com/s/16kOOHxNGXsJTxv4NQgEd0A
提取码:rain

下面为思维导图对应的大纲


线性变换与矩阵

线性变换

矩阵——线性变换的表现形式

矩阵乘法——多个线性变换的组合

行列式,线性方程组,逆,秩

行列式

  • 衡量线性变换对空间的拉伸或收缩程度

线性方程组,逆

  • 逆就是相反的线性变换

  • 线性变换后的空间的维度

零空间/核

点乘与叉乘

点乘——投影

叉乘——体积

克莱姆法则

运用前面的知识来理解克莱姆法则的本质

基向量的变换

线性变换的两大作用

  • 视角转换,向量不变
  • 向量转换,视角不变

如何将一个空间中的线性变换映射到另一个空间

特征值与特征向量

特征向量:线性变换前后,方向不变的向量

应用:在计算线性变换时,可以将这个变换映射到特征向量组成的空间中,然后进行计算,再将计算结果映射回来

向量空间

什么是向量?

有问题可以留言哦~ 觉得有帮助也可以投喂一下博主,感谢~
文章链接:https://www.corrain.top/linear-algebra/
版权声明:本博客所有文章除特别声明外,均采用 CC BY-NC-SA 4.0 许可协议。转载请注明文章地址及作者

评论

  1. wey
    3 月前
    2024-2-23 13:11:26

    1

发送评论 编辑评论


				
|´・ω・)ノ
ヾ(≧∇≦*)ゝ
(☆ω☆)
(╯‵□′)╯︵┴─┴
 ̄﹃ ̄
(/ω\)
∠( ᐛ 」∠)_
(๑•̀ㅁ•́ฅ)
→_→
୧(๑•̀⌄•́๑)૭
٩(ˊᗜˋ*)و
(ノ°ο°)ノ
(´இ皿இ`)
⌇●﹏●⌇
(ฅ´ω`ฅ)
(╯°A°)╯︵○○○
φ( ̄∇ ̄o)
ヾ(´・ ・`。)ノ"
( ง ᵒ̌皿ᵒ̌)ง⁼³₌₃
(ó﹏ò。)
Σ(っ °Д °;)っ
( ,,´・ω・)ノ"(´っω・`。)
╮(╯▽╰)╭
o(*////▽////*)q
>﹏<
( ๑´•ω•) "(ㆆᴗㆆ)
( ゜- ゜)つロ
_(:з」∠)_
(⌒▽⌒)
( ̄▽ ̄)
(=・ω・=)
(*°▽°*)八(*°▽°*)♪
✿ヽ(°▽°)ノ✿
(¦3【▓▓】
눈_눈
(ಡωಡ)
_(≧∇≦」∠)_
━━━∑(゚□゚*川━
(`・ω・´)
( ̄3 ̄)
✧(≖ ◡ ≖✿)
(・∀・)
(〜 ̄△ ̄)〜
→_→
(°∀°)ノ
╮( ̄▽ ̄)╭
( ´_ゝ`)
←_←
(;¬_¬)
(゚Д゚≡゚д゚)!?
( ´・・)ノ(._.`)
Σ(゚д゚;)
Σ(  ̄□ ̄||)<
(´;ω;`)
(/TДT)/
(^・ω・^)
(。・ω・。)
(● ̄(エ) ̄●)
ε=ε=(ノ≧∇≦)ノ
(´・_・`)
(-_-#)
( ̄へ ̄)
( ̄ε(# ̄) Σ
(╯°口°)╯(┴—┴
ヽ(`Д´)ノ
("▔□▔)/
(º﹃º )
(๑>؂<๑)
。゚(゚´Д`)゚。
(∂ω∂)
(┯_┯)
(・ω< )★
( ๑ˊ•̥▵•)੭₎₎
¥ㄟ(´・ᴗ・`)ノ¥
Σ_(꒪ཀ꒪」∠)_
٩(๛ ˘ ³˘)۶❤
(๑‾᷅^‾᷅๑)
😂
😀
😅
😊
🙂
🙃
😌
😍
😘
😜
😝
😏
😒
🙄
😳
😡
😔
😫
😱
😭
💩
👻
🙌
🖕
👍
👫
👬
👭
🌚
🌝
🙈
💊
😶
🙏
🍦
🍉
😣
Source: github.com/k4yt3x/flowerhd
颜文字
Emoji
小恐龙
花!
小黄脸
热词系列一
tv_小电视
上一篇
下一篇